
redhat.com Whitepaper 16 steps for building production-ready Kubernetes clusters

facebook.com/redhatinc 
@RedHat 
linkedin.com/company/red-hat

Overview

Kubernetes is a powerful tool for building highly scalable systems. As a result, many companies have 
begun, or are planning, to use it to orchestrate production services. However, like most powerful 
technologies, Kubernetes is complex. How do you know if you have configured your setup correctly 
and that it is safe to open the network to your services? The following 16 steps can help you prepare 
your containers and Kubernetes clusters for production traffic.

Build the foundation

1. Use minimal base images

What: Containers are application stacks built into a system image. Everything from your business 
logic to the kernel gets packed inside. Minimal images strip out as much of the operating system (OS) 
as possible and force you to explicitly add back any components you need. 

Why: By including only the software you intend to use in your container, you gain performance and 
security benefits. You have fewer bytes on disk, less network traffic for images being copied, and 
fewer tools for potential attackers to access. 

How: Red Hat® Universal Base Image, a component of Red Hat Enterprise Linux® that helps build 
containers, is a popular choice because it has enterprise support from Red Hat, and it can be used and 
supported on other platforms. 

2. Use a registry that offers the best uptime 

What: Registries are repositories for images, making those images available for download and launch. 
When you specify your deployment configuration, you will need to specify where to get the image 
with a path <registry>/<remote name>:<tag> :

apiVersion: v1 

kind: Deployment ... 

spec: ... 

  containers 

  - name: app 

    image: docker.io/app-image:version1

16 steps for building production-ready 
Kubernetes clusters

http://redhat.com
https://www.redhat.com/en/blog/introducing-red-hat-universal-base-image


2redhat.com Whitepaper 16 steps for building production-ready Kubernetes clusters

Why: Your cluster needs images to run. 

How: Red Hat OpenShift® provides a built-in container image registry that runs as a standard work-
load on the cluster. Most cloud providers also offer private image registry services: Google offers 
the Google Container Registry, Amazon Web Services (AWS) provides Amazon Elastic Container 
Registry (ECR), and Microsoft has the Azure Container Registry. 

Do your homework, and choose a private registry that offers the best uptime. Because your cluster 
will rely on your registry to launch newer versions of your software, any downtime will prevent updates 
to running services.

3. Use ImagePullSecrets to authenticate your registry

What: ImagePullSecrets are Kubernetes objects that let your cluster authenticate with your registry, 
so the registry can be selective about who is able to download your images.

Why: If your registry is exposed enough for your cluster to pull images from it, then it is exposed 
enough to need authentication.

How: The Kubernetes website has a good walkthrough on configuring ImagePullSecrets, using 
Docker as a sample registry.

Organizing the cluster

Building and running applications based on microservices architectures can become complex quickly. 
Much of the benefit of using microservices comes from enforcing separation of duties at a service 
level, effectively creating abstractions for the various components of your backend. Some good 
examples include running a database separate from business logic, running separate development 
and production versions of software, or separating out horizontally scalable processes. 

A drawback of having different services perform different duties is that they cannot be treated as 
equals. Kubernetes gives you many tools to deal with this challenge.

4. Isolate environments by using namespaces 

What: Namespaces are the most basic and powerful grouping mechanism in Kubernetes. They work 
almost like virtual clusters. Most objects in Kubernetes are, by default, limited to affecting a single 
namespace at a time. 

Why: You will need to use namespaces as most objects are namespace scoped. Namespaces provide 
strong isolation and are perfect for isolating environments with different purposes. For example, pro-
duction environments and those used strictly for testing. They can also separate different service 
stacks that support a single application, like keeping your security solution’s workloads separate from 
your own applications. A good rule to follow is to divide namespaces by resource allocation. If two sets 
of microservices will require different resource pools, place them in separate namespaces. 

How: Namespaces are part of the metadata of most object types:

apiVersion: v1 

kind: Deployment 

metadata: 

  name: example-pod 

http://linkedin.com/company/red
https://docs.openshift.com/container-platform/4.7/registry/registry-options.html
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#log-in-to-docker


3redhat.com Whitepaper 16 steps for building production-ready Kubernetes clusters

  namespace: app-pod 

  ...

Note that you should always create your own namespaces instead of relying on the default 
namespace. Kubernetes’ defaults typically optimize for development speed, and this approach often 
means forgoing even the most basic security measures.

5. Organize your clusters with labels 

What: Labels are the most basic and extensible way to organize your cluster. They allow you to create 
arbitrary key:value pairs that separate your Kubernetes objects. For instance, you might create a label 
key that separates services that handle sensitive information from those that do not. 

Why: As mentioned, Kubernetes uses labels for organization, but, more specifically, they are used for 
selection. As a result, when you want to give a Kubernetes object a reference to a group of objects in 
some namespace, like telling a network policy which services are allowed to communicate with each 
other, you use their labels. Because they represent such an open-ended type of organization, do your 
best to keep things simple, and only create labels where you require the power of selection. 

How: Labels are a simple spec field you can add to your YAML files:

apiVersion: v1 

kind: Deployment 

metadata: 

  name: example-pod 

  ... 

  matchLabels: 

    userexposed: true 

    storespii: true

6. Use annotations to track important system changes 

What: Annotations are arbitrary key-value metadata you can attach to your pods, much like labels. 
However, Kubernetes does not read or handle annotations, so the rules around what you can and 
cannot annotate a pod with are fairly liberal, and they cannot be used for selection. 

Why: They help you track certain important features of your containerized applications, like version 
numbers or dates and times of first bring up. Annotations, in the context of Kubernetes alone, are a 
fairly powerless construct, but they can be an asset to your developers and operations teams when 
used to track important system changes. 

How: Annotations are a spec field similar to labels:

apiVersion: v1 

kind: Pod 

metadata: 

  name: example-pod 

http://linkedin.com/company/red


4redhat.com Whitepaper 16 steps for building production-ready Kubernetes clusters

  ... 

  annotations: 

    version: four 

    launchdate: tuesday

Providing security for your cluster

Now that you have a cluster set up and organized the way you want, your next step is incorporat-
ing security. In this section, we detail some important steps you should take to protect your cluster 
against security threats.

7. Implement access control using Kubernetes role-based access control (RBAC) 

What: RBAC allows you to control who can view or modify different aspects of your cluster. 

Why: If you want to follow the principle of least privilege, then you need to have RBAC set up to limit 
what your cluster users and what your deployments are able to do. 

How: If you are setting up your own cluster (i.e., not using a managed Kubernetes service), make sure 
you are using ‘’--authorization-mode=Node,RBAC” to launch your Kubernetes application pro-
gramming interface (API) server. If you are using a managed Kubernetes instance, you can check that 
it is set up to use RBAC by querying the command used to start the Kubernetes API server. The only 
generic way to check is to look for “--authorization-mode…” in the output of kubectl clus-
ter-info dump. 

Once RBAC is turned on, you need to change the default permissions to suit your needs. The 
Kubernetes project site provides documentation on how to set up RBAC Roles and RoleBindings.

8. Prevent risky behavior and configurations using Open Policy Agent  
(OPA) Gatekeeper 

What: Gatekeeper provides a Kubernetes admission controller built around the OPA engine to  
integrate OPA and the Kubernetes API service. OPA offers an open source service that can  
evaluate inputs against user-defined policies and mark the input as passing or failing, making OPA 
very useful for Kubernetes cluster security compliance, as well as for practical resource configuration 
management. The Gatekeeper controller constantly monitors existing cluster objects to detect  
policy violations.

Why: Building and enforcing security policies is one of the core pillars of protecting containerized 
applications in Kubernetes. Providing standard policies that can be enforced across environments 
ensures consistent security and compliance.

How: Users can write policies using the OPA custom programming language, Rego. Rego has a simple 
syntax and a small set of functions and operators, optimized for query evaluation. You can learn more 
about using OPA Gatekeeper by reading our two-part introductory blog series on OPA Gatekeeper. 
Read part one and part two.

9. Implement network control and firewalls using network policies 

What: Network policies are objects that allow you to explicitly state which traffic is permitted. With 
these policies in place, Kubernetes will block all other nonconforming traffic. 

http://linkedin.com/company/red
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://cloud.redhat.com/blog/better-kubernetes-security-with-open-policy-agent-opa-part-1
https://cloud.redhat.com/blog/better-kubernetes-security-with-open-policy-agent-opa-part-2


5redhat.com Whitepaper 16 steps for building production-ready Kubernetes clusters

Why: Limiting network traffic in your cluster is a basic and important security measure. Kubernetes 
by default enables open communication between all services. Leaving this “default open” configura-
tion in place means an Internet-connected service is just one hop away from a database storing sensi-
tive information. 

How: The Cloud Native Computing Foundation (CNCF) published a blog that will get you started. 

10. Use Kubernetes Secrets to store and manage necessary sensitive information 

What: Secrets are how you store sensitive data in Kubernetes, including passwords, certificates,  
and tokens. 

Why: Your services may need to authenticate one another, other third-party services, or your users, 
whether you’re implementing transport layer security (TLS) or restricting access. 

How: The Kubernetes project offers a guide to Secrets. One key piece of advice: avoid loading 
secrets as environment variables, because having secret data in your environment is not a good 
general security practice. Instead, mount secrets into read-only volumes in your container. Get more 
information in this Using Secrets article. 

11. Use an image scanner to identify and remediate image vulnerabilities 

What: Scanners inspect the components installed in your images, including everything from the OS 
to your application stack. Scanners are useful for finding vulnerabilities in the versions of software 
that your image contains. 

Why: Vulnerabilities are discovered in popular open source packages all the time. Some notable 
examples are Heartbleed and Shellshock. You will want to know where such vulnerabilities reside in 
your system, so you know what images may need updating. 

How: Scanners are a fairly common bit of infrastructure. Leading container registries have a scanner 
offering. If you want to host something yourself, the open source Clair project is a popular choice.

Keeping your cluster stable 

Kubernetes represents a tall stack. You have your applications, running on baked-in kernels, running in 
virtual machines (VMs) or on bare metal , accompanied by Kubernetes’ own services sharing hardware. 
With all of these elements, plenty of things can go wrong, both in the physical and virtual realms, so it 
is very important to reduce risk in your development cycle wherever possible. The ecosystem around 
Kubernetes has developed the following set of best practices to help reduce risk. 

12. Follow continuous integration and continuous delivery (CI/CD) methodologies 

What: CI/CD is a process philosophy. It is the belief that every modification committed to your 
codebase should add incremental value and be production-ready. So if something in your codebase 
changes, you probably want to launch a new version of your service, either to run tests or to update 
your exposed instances. 

Why: Following CI/CD helps your engineering team keep quality in mind in their day-to-day work. If 
something breaks, fixing it becomes an immediate priority for the whole team, because every change 
thereafter, relying on the broken commit, will also be broken. 

How: Owing to the rise of cloud-deployed software, CI/CD is a popular methodology. As a result, you 
can choose from many great offerings, from managed to self-hosted. If you are part of a small team, 
managed offerings can help you save time and effort. 

http://linkedin.com/company/red
https://www.cncf.io/blog/2019/04/19/setting-up-kubernetes-network-policies-a-detailed-guide/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/#using-secrets


6redhat.com Whitepaper 16 steps for building production-ready Kubernetes clusters

13. Use canary methodologies for rolling out updates 

What: A canary deployment is a way of bringing service changes from a commit in your codebase  
to your users. You bring up a new instance running your latest version, and you migrate your users  
to the new instance slowly, gaining confidence in your updates over time, instead of swapping over  
all at once. 

Why: No matter how extensive your unit and integration tests are, they can never completely simu-
late running in production—there is always the chance that something will not function as intended. 
Using canary methodologies limits your users’ exposure to these issues. 

How: Kubernetes, as extensible as it is, provides many routes to incrementally roll out service updates. 
The most straightforward approach is to create a separate deployment that shares a load balancer 
with currently running instances. The idea is that you scale up the new deployment while scaling down 
the old until all running instances are of the new version. 

14. Implement monitoring and integrate it with security information and event 
management (SIEM) 

What: Monitoring means tracking and recording what your services are doing. 

Why: No matter how great your developers and security experts are, things will go wrong. When they 
do, you will need to know what happened to ensure that it does not happen again. 

How: There are two steps to successfully monitor a service—the code needs to be instrumented, and 
the output of that instrumentation needs to be fed somewhere for storage, retrieval, and analysis. 
How you perform instrumentation is largely dependent on your toolchain, but a quick web search 
should give you a starting place. For storing the output, consider a managed SIEM technology, like 
Splunk or Sumo Logic, unless you have specialized knowledge or need.

Advanced topics 

Once your clusters reach a certain size, enforcing your best practices manually becomes impossible, 
and, as a result, the safety and stability of your systems will be challenged. After you cross this thresh-
old, consider the following topics: 

15. Manage interservice communication using a service mesh 

What: A service mesh is a way to manage your interservice communications, effectively creating a 
virtual network that you use when implementing your services. 

Why: Using a service mesh can alleviate some of the more tedious aspects of managing a cluster, 
such as ensuring that communications are properly encrypted. 

How: Depending on your choice of service mesh, getting up and running can vary wildly in complexity, 
and your configuration process will largely depend on your workloads. 

A word of warning: If you expect to need a service mesh in the future, set it up sooner rather than later. 
Incrementally changing communication styles within a cluster can be challenging.

http://linkedin.com/company/red


Copyright © 2021 Red Hat, Inc. Red Hat, the Red Hat logo, and OpenShift are trademarks or registered trademarks of Red Hat, Inc. or its 
subsidiaries in the United States and other countries.

North America 
1 888 REDHAT1 
www.redhat.com

About Red Hat
Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered 
approach to deliver reliable and high-performing Linux, hybrid cloud, container, and Kubernetes technologies. Red 
Hat helps customers develop cloud-native applications, integrate existing and new IT applications, and automate 
and manage complex environments. A trusted adviser to the Fortune 500, Red Hat provides award-winning support, 
training, and consulting services that bring the benefits of open innovation to any industry. Red Hat is a connective 
hub in a global network of enterprises, partners, and communities, helping organizations grow, transform, and 
prepare for the digital future.

Europe, Middle East,  
and Africa 
00800 7334 2835 
europe@redhat.com

Asia Pacific 
+65 6490 4200 
apac@redhat.com

Latin America 
+54 11 4329 7300 
info-latam@redhat.com

facebook.com/redhatinc 
@RedHat 
linkedin.com/company/red-hat

redhat.com 
#F29599_0821

16. Use admission controllers to unlock advanced features in Kubernetes

What: Admission controllers are a great catch-all tool for managing what is going into your cluster. 
They allow you to set up webhooks that Kubernetes will consult during bring up. There are two types 
of admission controllers: mutating and validating. Mutating admission controllers alter the configu-
ration of the deployment before it is launched. Validating admission controllers get permission from 
your webhooks that a given deployment is allowed to be launched.

Why: Admission controller use cases are broad and numerous—they provide a great way to iteratively 
improve your cluster’s stability with home-grown logic and restrictions.

How: To learn more, read this guide on how to get started with admission controllers.

Implementing Kubernetes-native security with Red Hat

Security platforms purpose-built to protect Kubernetes offer powerful security and operational 
advantages. Kubernetes-native security applies controls at the Kubernetes layer, ensuring consis-
tency, automation, and scale. Organizations successfully deploy security as code with security that is 
built in, not bolted on.

Download this whitepaper—Kubernetes-native security: What is it and why it matters—to find out 
more about the key features and benefits of Kubernetes-native security. Learn how it is different 
from existing container security approaches and how it delivers protections that are purpose-built for 
Kubernetes environments.

Whitepaper

https://www.redhat.com/en/about/company
https://access.redhat.com/recognition
mailto:europe@redhat.com
mailto:apac@redhat.com
mailto:info-latam@redhat.com
https://kubernetes.io/blog/2019/03/21/a-guide-to-kubernetes-admission-controllers/
https://www.redhat.com/en/resources/kubernetes-native-security-whitepaper

